Command Palette

Search for a command to run...

Blog
PreviousNext

Python Data Analysis Essentials

Master the essential Python libraries and techniques for data analysis, from data loading to visualization.

Introduction

Python has become the de facto language for data analysis. Let's explore the essential libraries and techniques.


Essential Libraries

Pandas: Data Manipulation

import pandas as pd
import numpy as np
 
data = {
    'name': ['Alice', 'Bob', 'Charlie'],
    'age': [25, 30, 35],
    'salary': [50000, 60000, 75000]
}
df = pd.DataFrame(data)

NumPy: Numerical Computing

arr = np.array([1, 2, 3, 4, 5])
print(f"Mean: {np.mean(arr)}")
print(f"Std: {np.std(arr)}")

Data Loading

# CSV files
df = pd.read_csv('data.csv')
 
# Excel files
df = pd.read_excel('data.xlsx')
 
# Quick inspection
print(df.info())
print(df.describe())
print(df.isnull().sum())

Data Cleaning

Handling Missing Values

# Fill with mean
df['column'] = df['column'].fillna(df['column'].mean())
 
# Drop rows
df_clean = df.dropna()

Removing Duplicates

df_unique = df.drop_duplicates()

Handling Outliers (IQR Method)

Q1 = df['column'].quantile(0.25)
Q3 = df['column'].quantile(0.75)
IQR = Q3 - Q1
 
lower = Q1 - 1.5 * IQR
upper = Q3 + 1.5 * IQR
 
df_clean = df[(df['column'] >= lower) & (df['column'] <= upper)]

Data Visualization

Matplotlib

import matplotlib.pyplot as plt
 
plt.figure(figsize=(10, 6))
plt.hist(df['age'], bins=20, edgecolor='black')
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()

Seaborn

import seaborn as sns
 
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()

Best Practices

  1. Start with data quality - Clean data leads to better insights
  2. Visualize early and often - Plots reveal hidden patterns
  3. Document your process - Your future self will thank you
  4. Use vectorized operations - Avoid loops when possible

Happy analyzing! 🐍📊